Module theory and Cartan matrices: a result of Schneider and its context

Cornelius Greither

25th May, 2016

Abstract

We begin by explaining the background, made up by module theory and a little Ktheory. Then we present the Cartan matrix and the Cartan-Brauer triangle in some detail and try to elucidate these concepts by simple examples. Then we state Schneider's result: if R is a complete discrete valution ring which has characteristic 0 and has p in its radical, and H is a finite cocommutative Hopf algebra over R, then the Cartan matrix is nonsingular, and we explain the important consequence in Hopf Galois theory: two projective H -modules are isomorphic as soon as they become isomorphic after base change to the quotient field of R.

0 The rings and modules in play

Let R be a complete discrete valuation ring, $\operatorname{rad}(\mathrm{R})$ its radical, $k=R / \operatorname{rad}(\mathrm{R})$ its residue field. We always suppose that R has characteristic 0 and that k has characteristic p. Let K be the field of fractions of R. Then (R, K, k) is a so-called modular triple. Let B be an R-algebra, finitely generated and projective as an R-module, and let A be a finite-dimensional k-algebra.

Remark:

1) The objects A and k will often be studied in their own right, but:
2) Whenever B and R are present, it will be understood that $A=k \otimes_{R} B=B / \operatorname{rad}(\mathrm{R}) B$. In this situation, we call B a lift of A. The algebras B and A may be Hopf algebras over the appropriate rings.

Example: For any finite group D, one can take the data $R=\mathbb{Z}_{p}, k=\mathbb{F}_{p}, B=\mathbb{Z}_{p}[D]$ and $A=\mathbb{F}_{p}[D]$.

1 Some module theory

All of the modules that we consider are finitely generated. Let $S \in\{k, A, R, B\}$.

A projective cover of a (left) S-module M is a projective (left) S-module P along with a surjective S-module homomorphism $\pi: P \rightarrow M$ such that $\operatorname{ker}(\pi) \subset \operatorname{rad}(\mathrm{P})=\operatorname{rad}(\mathrm{S}) P$. Projective covers exist, and are unique up to (non-unique) isomorphism.

Examples:

1) For any $x \in \operatorname{rad}(\mathrm{~S})$, the projection $\pi: S \rightarrow S / S x$ is a projective cover.
2) If G is a finite p-group and $S=\mathbb{F}_{p}[G]$, the augmentation map $\varepsilon: S \rightarrow \mathbb{F}_{p}$ is a projective cover.

Now look at the k-algebra A. It is semisimple if and only if all A-modules are projective. In full generality, there are only a finite number of simple A-modules (up to isomorphism of course), say F_{1}, \ldots, F_{r}, and a finite number of indecomposable projective A-modules, say U_{1}, \ldots, U_{r}. Note that there are the same number of each:

Proposition 1. There is a bijection $\left\{F_{i}\right\} \leftrightarrow\left\{U_{i}\right\}$. In one direction, a simple A-module F_{i} is sent to its projective cover over A. In the other, an indecomposable A-module U_{i} is sent to $U_{i} / \operatorname{rad}(A) U_{i}$.

Moreover, one can say that each U_{i} occurs as an ideal in A, and as a left A-module, A is the direct sum of indecomposable projectives (possibly with repetitions).

Now enters B (recall that in this situation $A=k \otimes_{R} B$).
Proposition 2. Let the modules U_{i} be defined as above, and let P_{i} denote the indecomposable projective B-modules. Then there is a bijection $\left\{P_{i}\right\} \leftrightarrow\left\{U_{i}\right\}$. In one direction, an indecomposable B-module P_{i} is sent to $k \otimes_{R} P_{i}$. In the other, an indecomposable A-module U_{i} is sent to the projective cover of U_{i} over B.

The proof uses lifting idempotents against a surjective homomorphism with topologically nilpotent kernel.

2 Review of K_{0} and G_{0}

Let $S \in\{k, R, A, B\}$. Recall that

$$
K_{0}(S)=\{\text { projective } S \text {-modules }\} / \text { short exact sequences, }
$$

(a short exact sequence $0 \leftarrow P^{\prime} \rightarrow P \rightarrow P^{\prime \prime} \rightarrow 0$ gives the relation $[P]=\left[P^{\prime}\right]+\left[P^{\prime \prime}\right]$), and

$$
G_{0}(S)=\{S \text {-modules of finite length }\} / \text { short exact sequences. }
$$

If S is artinian (for example, if $S=A$) then $G_{0}(S)$ is a free \mathbb{Z}-module on $\left[F_{1}\right], \ldots,\left[F_{r}\right]$ (the classes of the simple A-modules). If $S=A$ (respectively, $S=B$) then $K_{0}(S)$ is a free \mathbb{Z} module on $\left[U_{1}\right], \ldots,\left[U_{r}\right]$ (respectively, on $\left[P_{1}\right], \ldots,\left[P_{r}\right]$). Therefore we have isomorphisms of abelian groups

$$
\begin{aligned}
K_{0}(B) & \cong K_{0}(A)
\end{aligned} \subseteq G_{0}(A),
$$

3 The Cartan matrix

Define car : $K_{0}(A) \rightarrow G_{0}(A)$ by $[P] \mapsto[P]$ for each A-module P. Note that this is not the same map as the one appearing between these two groups at the end of the previous section. More precisely: Let $C=\left(c_{i j}\right)$ be the representing matrix for car with respect to the \mathbb{Z}-bases $\left\{\left[U_{i}\right]\right\}$ and $\left\{\left[F_{j}\right]\right\}$ of $K_{0}(A)$ and $G_{0}(A)$ respectively. Then $c_{i j}$ tells us how often the simple module F_{j} occurs in a composition series for the indecomposable projective module U_{i}.

Examples:

1) If A is semisimple then $U_{i}=F_{i}$ for all i, so C is the identity matrix.
2) If A is commutative then $A=\bigoplus_{i=1}^{r} A_{i}$ where each A_{i} is a local ring with residue field k_{i}. In this case we have $U_{i}=0 \times \cdots \times A_{i} \times \cdots \times 0$ and $F_{i}=0 \times \cdots \times k_{i} \times \cdots \times 0$, so C is diagonal, with $c_{i i}$ equal to the length of A_{i}.
3) Let $A=\mathbb{F}_{2}\left[S_{3}\right]$, where $S_{3}=\left\langle\sigma, \tau \mid \sigma^{3}=\tau^{2}=1, \tau \sigma=\sigma^{2} \tau\right\rangle$. Then

$$
A=U_{1} \times U_{2},
$$

where $U_{1}=\frac{\mathbb{F}_{2}[\tau]}{\left(\tau^{2}-1\right)}$ is an indecomposable, but not simple, A-module, and U_{2} is a simple A-module. This decomposition is induced from the decomposition

$$
\mathbb{F}_{2}[\sigma]=\mathbb{F}_{2} \oplus \frac{\mathbb{F}_{2}[\sigma]}{\left(\sigma^{2}+\sigma+1\right)}
$$

The simple A-modules are $F_{1}=\mathbb{F}_{2}$ (with trivial action) and $F_{2}=U_{2}$ (appearing in the decomposition above). In this case we find that that

$$
C=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)
$$

4) $[$ Schneider $]$. Let k have characteristic 2 , and let $A=k[x, e]$ with $x^{2}=0, e^{2}=e$ and $[x, e]=x$. It turns out that $\operatorname{dim}_{k}(A)=4, \operatorname{rad}(\mathrm{~A})=A x$, and

$$
\bar{A}=\frac{A}{\operatorname{rad}(\mathrm{~A})}=\frac{k[e]}{\left(e^{2}-e\right)}=k \times k .
$$

There are two simple A-modules (each a copy of k with zero action of x): F_{1}, which is annihilated by e, and F_{2}, which is annihilated by $1-e$. The indecomposable projectives are $U_{1}=A e$ and $U_{2}=A(1-e)$. We have a composition series

$$
0 \subset A x e \subset A e
$$

The quotient $\frac{A e}{A x e}$ is annihilated by $1-e$ and x, so it is isomorphic to F_{2}. In Axe we have exe $=(x e+x) e=x(e-1) e=0$, so Axe is isomorphic to F_{1}. Continuing in this
way, we find that

$$
C=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

which is singular! (The algebra A in this example is in fact a Hopf algebra, corresponding to the group scheme $\alpha_{2} \rtimes \mu_{2}$.)

4 The Cartan-Brauer Triangle

There is a commutative triangle:

Here the map dec is the so-called decomposition homomorphism.
(Added after the conference) The definition of dec goes as follows. Given a module M over $K \otimes_{R} B$, pick a finitely generated R-submodule $\mathcal{L} \subset M$ spanning M over K. (Such submodules \mathcal{L} are called lattices in M.) Define (!) $\operatorname{dec}(M)=\left[k \otimes_{R} \mathcal{L}\right]$. The catch is of course that it is not clear whether this is independent of the choice of lattice \mathcal{L}. But this can indeed be proved, by a pretty argument which is not too complicated. As soon as one knows that dec is well defined, it is easy to prove that it is a homomorphism and that the diagram commutes.

Proposition 3. If C is nonsingular ${ }^{1}$ then the following conditional statement is true:
If P, P^{\prime} are projective over B and $K \otimes_{R} P \cong K \otimes_{R} P^{\prime}$ as $K \otimes_{R} B$-modules, then $P \cong P^{\prime}$.
Proof. We are assuming that car is injective; and then the commutative triangle shows that the map $K \otimes_{R}$ - is also injective. Hence $K \otimes_{R} P \cong K \otimes_{R} P^{\prime}$ implies that the classes of P and P^{\prime} in $K_{0}(B)$ are the same. Hence P and P^{\prime} are stably isomorphic over B. Under our assumptions the Krull dimension of B is 1 , so stable isomorphism implies isomorphism.

The goal of the rest of the talk is now to show that C is nonsingular in the case that B is an R-Hopf algebra.

5 Schneider's result

Theorem 4. If B is a cocommutative R-Hopf algebra (finitely generated, projective over R) and $A=k \otimes_{R} B$, then the Cartan matrix $C=C_{A}$ is nonsingular.

[^0]Remark: Schneider also proves that C is symmetric, and that $\operatorname{det} C$ is a power of the characteristic of k if k is a finite field; but we will not deal with these extra statements.

Recall that in example (4) of section 3 we had $C=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$. Therefore the corresponding k-algebra A does not come from any Hopf algebra B over R : in Schneider's terminology, A is not liftable.

Plan of the Proof:

1) If B is commutative, then we're done. Indeed, since R is complete, B is a finite product of commutative local rings, and then, as said before, C is a nonsingular diagonal matrix.
2) Show the statement for H an order in $K[D]$, the group algebra of a finite group D. This part is modelled on the pre-existing proof in the case that $H=R[D]$. In that case, suppose that $x \in K_{0}(k[D])$ is in the kernel of car and lies in

$$
\bigcup_{\substack{C \leq D \\ C \text { cyclic }}} \operatorname{ind}_{C}^{D} K_{0}(k[C])
$$

(note that each $k[C]$ is commutative). Then one gets that x is zero, using some commutative diagrams and the trivial circumstance that group rings of cyclic groups are commutative (see part 1)). Now use Frobenius functors: these allow us to replace \bigcup
 $K_{0}(k[D])$ is \mathbb{Z}-torsion free, we have $\operatorname{ker}(c a r)=0$.
3) Reduce the general case to the case that $K \otimes_{R} H$ is a group ring, by a fairly straightforward descent argument.

Acknowledgments: The author would like to cordially thank Griff Elder for all the work he put into the organization of the Omaha 2016 workshop, and also Paul Truman for producing this very nice typeset version, from the notes he took of my old-fashioned white-board lecture.

[^0]: ${ }^{1}$ that is, if the integer $\operatorname{det} C$ is not zero; we're not saying anything about invertibility

